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S.I. SAMPLING MASK
A uniform Cartesian undersampling mask was employed in
our simulation studies for generating the incomplete k-space
data described in Sec. IV-A of the manuscript. The full k-space
data were undersampled by a factor of 3 using the uniform
sampling mask shown in Fig. S. 1.

Fig. S. 1: Sampling mask

S. II. DETAILS OF RECONSTRUCTION METHODS

The details of the three reconstruction methods employed
in our studies are presented below. They are based on the
imaging model:

g =HO +n, (1)

where 8 € EV is the sought-after coefficient vector, g € EM
is the observed measurement data, H € EM XV is the system
matrix, and n € EV is iid Gaussian noise.

A. Penalized least squares with TV regularization (PLS-TV)

The PLS-TV method involves solving the penalized least-
squares optimization framework with the penalty term as the
TV penalty:

é=afg;ﬂinﬂg—H@H%+)\||9||Tva (2)

where A is the regularization parameter. Proximal gradient
methods are commonly employed to implement the PLS-TV
method [1]-[3]. In this study, PLS-TV reconstruction was
performed for a dataset of measurements corresponding to 69
different images using the Berkeley Advanced Reconstruction
Toolbox (BART) [4], [5]. BART performs PLS-TV recon-
struction using the augmented Lagrangian based optimization
method proposed in [3]. The regularization parameter A in Eq.
(2) was chosen by first performing image reconstruction on a
subset of the dataset, with different values of A. The value of
A which provided the lowest mean of the root mean squared
error (RMSE) metric over the subset was chosen, and used for
image reconstruction of all the images in the dataset.

B. U-Net-based reconstruction

The following procedure, known as image-domain learning,
was employed for the U-Net based image reconstruction. First,
initial estimates of the images were obtained from the mea-
surement data by use of the pseudoinverse operator. They were
then employed as inputs to a convolutional neural network
(CNN), which was trained in order to produce artifact-free
images, similar to images from the ground truth distribution
[6]-[9]. As is common practice, the CNN architecture used in
this study is the U-Net [10]. A U-Net consists of two CNNs
that represent a downsampling path followed by an upsampling
path respectively, and skip connections [11] between similar
levels in the downsampling and upsampling paths. Let the
initial estimate from the measurement data be denoted as 6’
and the function computed by the U-Net be represented as
B(0';w) where B : EN — EY and w denotes the weight
parameters of the U-Net. Given a training data set of initial
estimate-ground truth pairs {9;,01}111 where D is the size
of the training data set, the optimal weight parameters w* are
learned by approximately solving the following optimization
problem:

D
w* = argminZﬁ(B(B&w), Bi), 3
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where L(-,-) is a suitable loss function. In this work, mean
absolute error was used as the loss function [12]. The model
for the U-Net was based on the single-coil baseline U-Net
architecture provided in [13]. A stochastic gradient-based
method known as RMSProp [14] was employed to solve the
optimization problem in Eq. (3). After this iterative scheme
for training the U-Net reached convergence, the trained U-Net
was used to reconstruct images from a previously unseen test
measurement dataset, where an initial estimate 0}, computed
from a test measurement data was employed to obtain the
reconstructed image oy = B(6),,;,w). The training and
testing of the U-Net based reconstruction was performed
using code available at https://github.com/facebookresearch/
fastMRI, which utilizes PyTorch Lightning [15].

C. Deep image prior (DIP)

Recently, Ulyanov et al. [16] showed that a CNN G :
R* — EN with randomly initialized weights w and random
input z € RF can be an effective regularizer for image
restoration problems such as denoising, super-resolution and
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inpainting. This method of regularization, known as deep
image prior (DIP), utilizes the observation that the structure of
deep convolutional networks captures several low-level image
statistics and is biased towards smooth, natural images. Van
Veen et al. [17] extended the DIP framework to applications
in tomographic imaging from incomplete measurements with
encouraging results. Essentially, image reconstruction using
the DIP method can be formulated in terms of the following
optimization problem:

*

w* = argmin ||g — HG(z; w)||3,
w

0 =G(z;w") 4)

where z and w are randomly initialized.

It has been shown in [16], [17] that the DIP method
overfits the measurement noise upon convergence. Hence,
further regularization may be required, either in the form
of early stopping or with the addition of penalties in the
optimization problem in Eq. (4). Inspired by [18], in our
experiments, image reconstruction using the DIP method with
TV regularization (DIP-TV) was performed by approximately
solving the following optimization problem:

w” = argmin ||g — HG(z, w)|[3 + M|G(z, w)||rv,
w

0

G(z;w") (%)

where z and w were randomly initialized, and A is the regu-
larization parameter. The same U-Net architecture employed
for the U-Net based reconstruction was employed for DIP-
TV, and was implemented in TensorFlow [19]. Similar to the
implementation of the PLS-TV method as outlined in Sec.
S. II-A, the regularization parameter A for the TV penalty in
Eq. (5) was chosen by first performing image reconstruction
on a subset of the dataset, with different values of \. Subse-
quently, the value which provided the lowest mean RMSE over
the subset was chosen to perform image reconstruction from
all the measurements. The optimization problem in Eq. (5) was
approximately solved using a stochastic gradient algorithm
called Adam [20].

S. III. EXAMPLES OF MEASUREMENT SPACE
HALLUCINATION MAPS

While the results in our simulation studies focused on the
effect of null space hallucination maps, measurement space
hallucination maps can also be computed corresponding to re-
constructed images from different methods. The measurement
space hallucination map is denoted as

OHM = ameas - 0tp7 (6)

meas

which describes the consistency between the measurement
component of the reconstructed image émeas with respect to
the truncated pseudoinverse solution étp that can be stably
obtained from the measurement data g. Furthermore, unlike
the null space hallucination map, the computation of é,’,{%s

does not require the knowledge of the true object 6. On the
other hand, the error map between 6,,.,s and 0,,.,s is a

similar but different error quantity that lies in the measurement
space N/ (H) and requires the knowledge of 6:

nEM _ p
ameas - Omeas - Omeas' (7)
nHM nEM :
In some cases, Gmeas and Omeas may not convey the same in-

formation due to the differences that can exist between 0,,,c4
and étp. These differences arise when there is significant
measurement noise in the imaging system or due to modeling
error in H, or both. With the “true” imaging operator denoted
as H and the assumed imaging operator as H, Eq. (1) can be
re-written as

g=HO +n. (8)

Accordingly, étp can be expressed as
6, = Hbg ~H5(HO +n) =HLHO + Hin.  (9)
On the other hand, 6,,,.,s is represented as

Ormeas = HEHO. (10)

It can be observed from Eq. (9) and Eq. (10) that, when either
or both of the quantities |[n||3 and |[H — H]|3 is non-trivial,
[18:p —Bpmcas| |5 is likely to be significant. In such cases, 8

meas
and OFM may represent different information.

Figure S.2 shows examples of measurement space halluci-
nation maps for images reconstructed by the U-Net method
corresponding to an in-distribution (IND) object and an out-
of-distribution (OOD) object. It can be observed that the
measurement component error map has appreciable differences
compared to the measurement space hallucination map. These
differences can be attributed to the presence of non-trivial mea-
surement noise as well as additional phase noise disturbance
during simulation of the k-space data resulting in model error,
since the phase noise is unknown and assumed to be zero
during reconstruction. The measurement space hallucination
maps as shown here may provide an insight into how well a
given reconstruction method maintains data consistency and
be compared with other reconstruction methods.
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Fig. S. 2: Measurement space hallucination maps for reconstructed images using the U-Net method corresponding to an IND
(above) and an OOD (below) object. Note that the measurement component error map and the measurement space hallucination
map are appreciably different. The red arrows point towards a region in each type of object where such differences can be
clearly seen.
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